Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517147

RESUMO

The integration of untargeted lipidomics approaches in ecotoxicology has emerged as a strategy to enhance the comprehensiveness of environmental risk assessment. Although current toxicity tests with soil microarthropods focus on species performance, that is, growth, reproduction, and survival, understanding the mechanisms of toxicity across all levels of biological organization, from molecule to community is essential for informed decision-making. Our study focused on the impacts of sublethal concentrations of the insecticide teflubenzuron on the springtail Folsomia candida. Untargeted lipidomics was applied to link changes in growth, reproduction, and the overall stress response with lipid profile changes over various exposure durations. The accumulation of teflubenzuron in organisms exposed to the highest test concentration (0.035 mg a.s. kg-1 soil dry wt) significantly impacted reproductive output without compromising growth. The results suggested a resource allocation shift from reproduction to size maintenance. This hypothesis was supported by lipid shifts on day 7, at which point reductions in triacylglycerol and diacylglycerol content corresponded with decreased offspring production on day 21. The hypermetabolism of fatty acids and N-acylethanolamines on days 2 and 7 of exposure indicated oxidative stress and inflammation in the animals in response to teflubenzuron bioaccumulation, as measured using high-performance liquid chromatography-tandem mass spectrometry. Overall, the changes in lipid profiles in comparison with phenotypic adverse outcomes highlight the potential of lipid analysis as an early-warning tool for reproductive disturbances caused by pesticides in F. candida. Environ Toxicol Chem 2024;00:1-12. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

2.
Environ Sci Technol ; 58(13): 5705-5715, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38460143

RESUMO

Extensive rare earth element (REE) mining activities have caused REE contamination of ambient agricultural soils, posing threats to associated food webs. Here, a simulated lettuce-snail food chain was conducted to evaluate the trophic transfer characteristics and the consequent effects of REEs on consumers. After 50-day exposure to soil, lettuce roots dose-dependently accumulated 9.4-76 mg kg-1 REEs and translocated 3.7-20 mg kg-1 REEs to shoots. Snails feeding on REE-contaminated shoots accumulated 3.0-6.7 mg kg-1 REEs with trophic transfer factors of 0.20-0.98, indicating trophic dilution in the lettuce-snail system. REE profiles in lettuce and snails indicated light REE (LREE) enrichment only in snails and the varied REE profiles along the food chain. This was corroborated by toxicokinetics. Estimated uptake (Ku) and elimination (Ke) parameters were 0.010-2.9 kgshoot kgsnail-1 day-1 and 0.010-1.8 day-1, respectively, with higher Ku values for LREE and HREE. The relatively high Ke, compared to Ku, indicating a fast REE elimination, supports the trophic dilution. Dietary exposure to REEs dose-dependently affected gut microbiota and metabolites in snails. These effects are mainly related to oxidative damage and energy expenditure, which are further substantiated by targeted analysis. Our study provides essential information about REE bioaccumulation characteristics and its associated risks to terrestrial food chains near REE mining areas.


Assuntos
Cadeia Alimentar , Metais Terras Raras , Herbivoria , Plantas , Solo , Alface
3.
Environ Toxicol Chem ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421212

RESUMO

Biotic ligand modeling (BLM) approaches are already applied to predict the bioavailability and possible risk of metals in surface water, but need further development for soils. The present study investigated the effect of major cations (Ca2+ , Mg2+ , Na+ , K+ , and H+ ) on cadmium bioaccumulation in the springtail Folsomia candida. To avoid the complexity of real soils and enable control of elemental speciation in the exposure medium, the animals were exposed to different cadmium concentrations in an inert quartz sand-solution medium. Accumulation of cadmium in the animals was measured after 7 days exposure at different cation concentrations. Among the cations, only Ca2+ significantly affected the uptake of cadmium in the springtails. Mg2+ also had higher effects compared with other selected cations. Using a BLM approach, the uptake of cadmium in the animals predicted by taking into account both Ca2+ and Mg2+ activities correlated well with the measured values (R2 = 0.68). The final estimated conditional binding constants for cadmium (log KCd-BL ), Ca (log KCa-BL ), and Mg (log KMg-BL ) of 1.06, 2.14, and 1.23 L/mol, respectively, were in agreement with previously reported values. The match between predicted and measured uptake data confirms the applicability and usefulness of the BLM for predicting the bioavailability of cadmium to springtails and opens the way for its application in soil. Environ Toxicol Chem 2024;00:1-7. © 2024 SETAC.

4.
J Hazard Mater ; 467: 133732, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350316

RESUMO

The risk characterization of microplastics (MP) in soil is challenging due to the non-alignment of existing exposure and effect data. Therefore, we applied data alignment methods to assess the risks of MP in soils subject to different sources of MP pollution. Our findings reveal variations in MP characteristics among sources, emphasizing the need for source-specific alignments. To assess the reliability of the data, we applied Quality Assurance/Quality Control (QA/QC) screening tools. Risk assessment was carried out probabilistically, considering uncertainties in data alignments and effect thresholds. The Hazardous Concentrations for 5% (HC5) of the species were significantly higher compared to earlier studies and ranged between 4.0 × 107 and 2.3 × 108 particles (1-5000 µm)/kg of dry soil for different MP sources and ecologically relevant metrics. The highest risk was calculated for soils with MP entering via diffuse and unspecified local sources, i.e., "background pollution". However, the source with the highest proportion of high-risk values was sewage, followed by background pollution and mulching. Notably, locations exceeding the risk threshold obtained low scores in the QA/QC assessment. No risks were observed for soils with compost. To improve future risk assessments, we advise to primarily test environmentally relevant MP mixtures and adhere to strict quality criteria.

5.
J Hazard Mater ; : 133690, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38336580

RESUMO

Some narratives present biodegradable plastic use for soil mulching practices in agriculture as "environmentally friendly" and "sustainable" alternatives to conventional plastics. To verify these narratives, environmental research recently started focusing on their potential impact on soil health, highlighting some concerns. The paper by Degli-Innocenti criticizes this unfolding knowledge arguing that it is affected by communication hypes, alarmistic writing and a focus on exposure scenarios purposedly crafted to yield negative effects. The quest of scientists for increased impact - the paper concludes - is the driver of such behavior. As scholars devoted to the safeguarding of scientific integrity, we set to verify whether this serious claim is grounded in evidence. Through a bibliometric analysis (using number of paper reads, citations and mentions on social media to measure the impact of publications) we found that: i) the papers pointed out by Degli-Innocenti as examples of biased works do not score higher than the median of similar publications; ii) the methodology used to support the conclusion is non-scientific; and iii) the paper does not fulfil the requirements concerning disclosure of conflicts of interests. We conclude that this paper represents a non-scientific opinion, potentially biased by a conflict of interest. We ask the paper to be clearly tagged as such, after the necessary corrections on the ethic section have been made. That being said, the paper does offer some useful insights for the definition of exposure scenarios in risk assessment. We comment and elaborate on these proposed models, hoping that this can help to advance the field.

6.
Chemosphere ; 352: 141513, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387657

RESUMO

Microplastics (MPs) and nanoplastics (NPs) are widely spreading in our living environment, accumulating in the human body and potentially threating human health. The retina, which is a terminally differentiated extension of the central nervous system, is essential for the visual system. However, the effects and molecular mechanisms of MPs/NPs on retina development and function are still unclear. Here, we investigated the effects and modes of action of polystyrene NPs (PS-NPs) on the retina using mice as a mammalian model species. Maternal PS-NP exposure (100 nm) at an environmentally realistic concentration of 10 mg L-1 (or 2.07 *1010 particles mL-1) via drinking water from the first day of pregnancy till the end of lactation (21 days after birth) caused defective neural retinal development in the neonatal mice, by depositing in the retinal tissue and reducing the number of retinal ganglion cells and bipolar cells. Exposure to PS-NPs retarded retinal vascular development, while abnormal electroretinogram (ERG) responses and an increased level of oxidative stress were also observed in the retina of the progeny mice after maternal PS-NP exposure. Metabolomics showed significant dysregulation of amino acids that are pivotal to neuron retinal function, such as glutamate, aspartate, alanine, glycine, serine, threonine, taurine, and serotonin. Transcriptomics identified significantly dysregulated genes, which were enriched in processes of angiogenesis, visual system development and lens development. Regulatory analysis showed that Fos gene mediated pathways could be a potential key target for PS-NP exposure in retinal development and function. Our study revealed that maternal exposure to PS-NPs generated detrimental effects on retinal development and function in progeny mice, offering new insights into the visual toxicity of PS-NPs.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Humanos , Feminino , Gravidez , Animais , Camundongos , Microplásticos , Poliestirenos/toxicidade , Exposição Materna/efeitos adversos , Plásticos , Metaboloma , Mamíferos
7.
Nanoscale Adv ; 6(3): 826-831, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298581

RESUMO

Because of its properties, silver is among the most used metals both as salt and as nanomaterials (NMs), hence reaching the environment. Multigenerational (MG) exposure testing is scarce, and especially so for NMs and soil invertebrates. In this study the MG effects of Ag NMs (Ag NM300K) and Ag salt (AgNO3) were assessed, using Enchytraeus crypticus in LUFA 2.2 soil. Survival, reproduction and internal Ag concentration in the animals were measured throughout 7 generations (5 generations (F0-F4) in spiked soil plus 2 (F5-F6) in clean soil) exposed to sublethal concentrations corresponding to the reproduction EC10 and EC50 obtained in standard toxicity tests (45 and 60 mg Ag per kg soil DW for AgNO3; 20 and 60 mg Ag per kg soil DW for Ag NM300K). MG exposure caused a dose-related decrease in reproduction for both Ag forms. Ag uptake peaked in the F1 (64 days) for AgNO3 and F2 (96 days) for Ag NM300K, after which it decreased. In agreement with toxicokinetic studies, a maximum body Ag concentration was reached (20 mg Ag per kg body DW (AgNO3) and 70 mg Ag per kg body DW (Ag NM300K)) and after which detoxification mechanisms seem to be activated with elimination of Ag accompanied by a decrease in reproduction. Transfer to clean soil allowed Ag to be (fully) eliminated from the animals. This MG study confirmed the effects determined in standard reproduction toxicity tests but further allowed to monitor the dynamics between exposure and effects of the Ag materials, and how the animals seem to cope with Ag for 7 generations by compensating between detoxification and reproductive output.

8.
Sci Total Environ ; 917: 170206, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38278271

RESUMO

To account for potential differences in bioavailability (and toxicity) due to different soil organic matter (OM) contents in natural and artificial soil (AS), in the current European environmental risk assessment (ERA) a correction factor (CF) of 2 is applied to toxicity endpoints for so called lipophilic pesticides (i.e. log Kow > 2) generated from laboratory tests with soil invertebrates. However, the appropriateness of a single CF is questioned. To improve the accuracy of ERA, this study investigated the influence of soil OM content on the toxicity to the earthworm Eisenia andrei of five active substances used in pesticides covering a wide range of lipophilicity. Laboratory toxicity tests were performed in AS containing 10 %, 5 % and 2.5 % peat, and a natural LUFA 2.2 soil (4.5 % OM), assessing effects on survival, biomass change and reproduction. Pesticide toxicity differed significantly between soils. For all pesticides, toxicity values (LC50, EC50) strongly correlated with soil OM content in AS (r2 > 0.82), with toxicity decreasing with increasing OM content. Obtained regression equations were used to calculate the toxicity at OM contents of 10.0 % and 5.0 %. Model-estimated toxicity between these soils differed by factors of 1.9-3.6, and 2.1-3.2 for LC50 and EC50 values, respectively. No clear relationships between pesticide lipophilicity and toxicity-OM relationships were observed: the toxicity of non-lipophilic and lipophilic pesticides was influenced by OM content in a similar manner. The results suggest that the CF of 2 may not be appropriate as it is based on incorrect assumptions regarding the relationships between lipophilicity, OM content and toxicity. Further research should be conducted to understand the mechanistic link between toxicity and soil OM content to better define more chemically and ecologically appropriate CFs for ERA.


Assuntos
Oligoquetos , Praguicidas , Poluentes do Solo , Animais , Praguicidas/toxicidade , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Testes de Toxicidade
9.
Polymers (Basel) ; 15(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37960002

RESUMO

Bio-solids (biological sludge) from wastewater treatment plants are a significant source of the emission of microplastics (MPs) into the environment. Weakening the structure of MPs before they enter the environment may accelerate their degradation and reduce the environmental exposure time. Therefore, we studied the effect of UV-A and UV-C, applied at 70 °C, on three types of MPs, polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET), that are commonly found in sewage sludge, using three shapes (fibers, lines, granules). The MPs were exposed to UV radiation in bio-solid suspensions, and to air and water as control. The structural changes in and degradation of the MPs were investigated using Attenuated Total Reflectance-Fourier Transform Infrared Spectrometry (ATR-FTIR) and surface morphology was performed with SEM analysis. UV exposure led to the emergence of carbonyl and hydroxyl groups in all of the PP samples. In PE and PET, these groups were formed only in the bio-solid suspensions. The presence of carbonyl and hydroxyl groups increased with an increasing exposure time. Overall, UV radiation had the greatest impact on the MPs in the bio-solids suspension. Due to the surface-to-volume ratio of the tested samples, which influences the degradation rate, the fibers were more degraded than the other two plastic shapes. UV-A was slightly more effective at degrading the MPs than UV-C. These findings show that ultraviolet radiation in combination with an elevated temperature affects the structure of polymers in wastewater bio-solids, which can accelerate their degradation.

10.
Ecotoxicology ; 32(10): 1209-1220, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37989986

RESUMO

Standard toxicity tests expose springtails (Collembola) through soil, while dietary exposure tests with animals visible on a surface are less commonly applied. We refined a method for dietary chemical exposure for two widely distributed and abundant Collembola species: Folsomia quadrioculata and Hypogastrura viatica as existing methods were sub-optimal. Newly hatched Collembola were offered bark with a natural layer of Cyanobacteria that was either moistened with a solution of the neonicotinoid insecticide imidacloprid using a micropipette or soaked in the solution overnight. The first method was superior in producing a measured concentration close to the nominal (0.21 and 0.13 mg/kg dry bark, respectively), and resulting in sub-lethal effects as expected. The adult body size was reduced by 8% for both species, but egg production only in H. viatica. Contrastingly, soaked bark resulted in a measured concentration of 8 mg/kg dry bark, causing high mortality and no egg production in either species. Next, we identified the sub-lethal concentration-range by moistening the bark to expose H. viatica to 0, 0.01, 0.04, 0.13, 0.43 and 1.2 mg imidacloprid/kg dry bark. Only the highest concentration affected survival, causing a mortality of 77%. Imidacloprid reduced moulting rate and the body size at first reproduction. The age at first reproduction appeared delayed as some replicates did not reproduce within the experiment duration. The method of moistened bark for dietary exposure proved optimal to continuously study life history traits, such as growth and reproductive outcomes, which are important to understand effects on key events crucial for population viability and growth.


Assuntos
Artrópodes , Inseticidas , Animais , Exposição Dietética , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Inseticidas/toxicidade
11.
Environ Sci Technol ; 57(51): 21637-21649, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38012053

RESUMO

Fully understanding the cellular uptake and intracellular localization of MoS2 nanosheets (NSMoS2) is a prerequisite for their safe applications. Here, we characterized the uptake profile of NSMoS2 by functional coelomocytes of the earthworm Eisenia fetida. Considering that vacancy engineering is widely applied to enhance the NSMoS2 performance, we assessed the potential role of such atomic vacancies in regulating cellular uptake processes. Coelomocyte internalization and lysosomal accumulation of NSMoS2 were tracked by fluorescent labeling imaging. Cellular uptake inhibitors, proteomics, and transcriptomics helped to mechanistically distinguish vacancy-mediated endocytosis pathways. Specifically, Mo ions activated transmembrane transporter and ion-binding pathways, entering the coelomocyte through assisted diffusion. Unlike molybdate, pristine NSMoS2 (P-NSMoS2) induced protein polymerization and upregulated gene expression related to actin filament binding, which phenotypically initiated actin-mediated endocytosis. Conversely, vacancy-rich NSMoS2 (V-NSMoS2) were internalized by coelomocytes through a vesicle-mediated and energy-dependent pathway. Mechanistically, atomic vacancies inhibited mitochondrial transport gene expression and likely induced membrane stress, significantly enhancing endocytosis (20.3%, p < 0.001). Molecular dynamics modeling revealed structural and conformational damage of cytoskeletal protein caused by P-NSMoS2, as well as the rapid response of transport protein to V-NSMoS2. These findings demonstrate that earthworm functional coelomocytes can accumulate NSMoS2 and directly mediate cytotoxicity and that atomic vacancies can alter the endocytic pathway and enhance cellular uptake by reprogramming protein response and gene expression patterns. This study provides an important mechanistic understanding of the ecological risks of NSMoS2.


Assuntos
Oligoquetos , Animais , Oligoquetos/metabolismo , Molibdênio/farmacologia , Transporte Biológico , Simulação por Computador , Imagem Molecular
12.
Toxics ; 11(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37999570

RESUMO

The world population is experiencing colossal growth and thus demand for food, leading to an increase in the use of pesticides. Persistent pesticide contamination, such as carbendazim, remains a pressing environmental concern, with potentially long-term impacts on aquatic ecosystems. In the present study, Daphnia magna was exposed to carbendazim (5 µg L-1) for 12 generations, with the aim of assessing gene transcription alterations induced by carbendazim (using a D. magna custom microarray). The results showed that carbendazim caused changes in genes involved in the response to stress, DNA replication/repair, neurotransmission, ATP production, and lipid and carbohydrate metabolism at concentrations already found in the environment. These outcomes support the results of previous studies, in which carbendazim induced genotoxic effects and reproduction impairment (increasing the number of aborted eggs with the decreasing number of neonates produced). The exposure of daphnids to carbendazim did not cause a stable change in gene transcription between generations, with more genes being differentially expressed in the F0 generation than in the F12 generation. This could show some possible daphnid acclimation after 12 generations and is aligned with previous multigenerational studies where few ecotoxicological effects at the individual and populational levels and other subcellular level effects (e.g., biochemical biomarkers) were found.

13.
J Hazard Mater ; 460: 132487, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690204

RESUMO

Extensive rare earth element (REE) mining activities pose threats to agricultural soils surrounding the mining areas. Here, low and high REE-contaminated soils from farmlands around mine tailings were remediated with hydroxyapatite. A toxicokinetic approach was applied to assess whether the use of hydroxyapatite reduced the bioavailability of REEs and thus inhibited their accumulation in the terrestrial organism Enchytraeus crypticus. Our results showed that addition of hydroxyapatite increased soil pH, DOC and anion contents. CaCl2-extractable REE concentrations significantly decreased, indicating the stabilization by hydroxyapatite. The influence of hydroxyapatite on the REE accumulation in enchytraeids was quantified by fitting a toxicokinetic model to dynamic REE body concentrations. The estimated uptake (Ku) and elimination rate constants (Ke), and bioaccumulation factor (BAF) for REEs were in the range of 0.000821 - 0.122 kgsoil/kgworm day-1, 0.0224 - 0.136 day-1, and 0.00135 - 1.96, respectively. Both Ku and BAF were significantly reduced by over 80% by hydroxyapatite addition, confirming the decreased REE bioavailability. Low atomic number REEs had higher BAFs in slightly contaminated soil, suggesting a higher bioaccumulation potential of light REEs in soil organisms. Overall, chemical stabilization with amendments can attenuate the bioavailability of REEs and reduce the potential ecological risk of contaminated agricultural soils near REE mining areas.


Assuntos
Metais Terras Raras , Oligoquetos , Animais , Solo , Toxicocinética , Agricultura , Bioacumulação , Durapatita , Metais Terras Raras/toxicidade
14.
Artigo em Inglês | MEDLINE | ID: mdl-37563990

RESUMO

The European environmental risk assessment (ERA) of plant protection products follows a tiered approach. The approach for soil invertebrates currently consists of two steps, starting with a Tier 1 assessment based on reproduction toxicity tests with earthworms, springtails, and predatory mites. In case an unacceptable risk is identified at Tier 1, field studies can be conducted as a higher-tier option. For soil invertebrates, intermediate tiers are not implemented. Hence, there is limited possibility to include additional information for the ERA to address specific concerns when the Tier 1 fails, as an alternative to, for example, a field study. Calibrated intermediate-tier approaches could help to address risks for soil invertebrates with less time and resources but also with sufficient certainty. A multistakeholder workshop was held on 2-4 March 2022 to discuss potential intermediate-tier options, focusing on four possible areas: (1) natural soil testing, (2) single-species tests (other than standard species), (3) assessing recovery in laboratory tests, and (4) the use of assembled soil multispecies test systems. The participants acknowledged a large potential in the intermediate-tier options but concluded that some issues need to be clarified before routine application of these approaches in the ERA is possible, that is, sensitivity, reproducibility, reliability, and standardization of potential new test systems. The definition of suitable assessment factors needed to calibrate the approaches to the protection goals was acknowledged. The aims of the workshop were to foster scientific exchange and a data-driven dialog, to discuss how the different approaches could be used in the risk assessment, and to identify research priorities for future work to address uncertainties and strengthen the tiered approach in the ERA for soil invertebrates. This article outlines the background, proposed methods, technical challenges, difficulties and opportunities in the ERA, and conclusions of the workshop. Integr Environ Assess Manag 2023;00:1-14. © 2023 SETAC.

15.
Environ Toxicol Chem ; 42(11): 2302-2316, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37589402

RESUMO

Per- and polyfluorinated substances (PFAS) are a group of thousands of ubiquitously applied persistent industrial chemicals. The field of PFAS environmental research is developing rapidly, but suffers from substantial biases toward specific compounds, environmental compartments, and organisms. The aim of our study was therefore to highlight current developments and to identify knowledge gaps and subsequent research needs that would contribute to a comprehensive environmental risk assessment for PFAS. To this end, we consulted the open literature and databases and found that knowledge of the environmental fate of PFAS is based on the analysis of <1% of the compounds categorized as PFAS. Moreover, soils and suspended particulate matter remain largely understudied. The bioavailability, bioaccumulation, and food web transfer studies of PFAS also focus on a very limited number of compounds and are biased toward aquatic biota, predominantly fish, and less frequently aquatic invertebrates and macrophytes. The available ecotoxicity data revealed that only a few PFAS have been well studied for their environmental hazards, and that PFAS ecotoxicity data are also strongly biased toward aquatic organisms. Ecotoxicity studies in the terrestrial environment are needed, as well as chronic, multigenerational, and community ecotoxicity research, in light of the persistency and bioaccumulation of PFAS. Finally, we identified an urgent need to unravel the relationships among sorption, bioaccumulation, and ecotoxicity on the one hand and molecular descriptors of PFAS chemical structures and physicochemical properties on the other, to allow predictions of exposure, bioaccumulation, and toxicity. Environ Toxicol Chem 2023;42:2302-2316. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecotoxicologia , Fluorocarbonos , Animais , Invertebrados , Medição de Risco , Pesquisa , Fluorocarbonos/toxicidade
16.
Environ Sci Pollut Res Int ; 30(42): 95338-95347, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37542693

RESUMO

Neonicotinoid insecticides are harmful to non-target soil invertebrates, which are crucial for sustainable agriculture. Gene expression biomarkers could provide economic and high-throughput metrics of neonicotinoid exposure and toxicity to non-target invertebrates. Thereby, biomarkers can help guide remediation efforts or policy enforcement. Gene expression of Glutathione S-Transferase 3 (GST3) has previously been proposed as a biomarker for the neonicotinoid imidacloprid in the soil ecotoxicological model species Folsomia candida (Collembola). However, it remains unclear how reliably gene expression of neonicotinoid biomarkers, such as GST3, can indicate the exposure to the broader neonicotinoid family under putative GST enzymatic inhibition. In this work, we exposed springtails to two neonicotinoids, thiacloprid and imidacloprid, alongside diethyl maleate (DEM), a known GST metabolic inhibitor that imposes oxidative stress. First, we determined the influence of DEM on neonicotinoid toxicity to springtail fecundity. Second, we surveyed the gene expression of four biomarkers, including GST3, under mutual exposure to neonicotinoids and DEM. We observed no effect of DEM on springtail fecundity. Moreover, the expression of GST3 was only influenced by DEM under mutual exposure with thiacloprid but not with imidacloprid. The results indicate that GST3 is not a robust indicator of neonicotinoid exposure and that probable GST enzymatic inhibition mediates the toxicity of imidacloprid and thiacloprid differentially. Future research should investigate biomarker reliability under shifting metabolic conditions such as provided by DEM exposure.


Assuntos
Artrópodes , Inseticidas , Animais , Reprodutibilidade dos Testes , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Invertebrados , Inseticidas/toxicidade , Glutationa Transferase , Solo , Biomarcadores
17.
Environ Sci Technol ; 57(30): 11009-11021, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471269

RESUMO

Molybdenum disulfide (MoS2) nanosheets are increasingly applied in several fields, but effective and accurate strategies to fully characterize potential risks to soil ecosystems are lacking. We introduce a coelomocyte-based in vivo exposure strategy to identify novel adverse outcome pathways (AOPs) and molecular endpoints from nontransformed (NTMoS2) and ultraviolet-transformed (UTMoS2) MoS2 nanosheets (10 and 100 mg Mo/L) on the earthworm Eisenia fetida using nontargeted lipidomics integrated with transcriptomics. Machine learning-based digital pathology analysis coupled with phenotypic monitoring was further used to establish the correlation between lipid profiling and whole organism effects. As an ionic control, Na2MoO4 exposure significantly reduced (61.2-79.5%) the cellular contents of membrane-associated lipids (glycerophospholipids) in earthworm coelomocytes. Downregulation of the unsaturated fatty acid synthesis pathway and leakage of lactate dehydrogenase (LDH) verified the Na2MoO4-induced membrane stress. Compared to conventional molybdate, NTMoS2 inhibited genes related to transmembrane transport and caused the differential upregulation of phospholipid content. Unlike NTMoS2, UTMoS2 specifically upregulated the glyceride metabolism (10.3-179%) and lipid peroxidation degree (50.4-69.4%). Consequently, lipolytic pathways were activated to compensate for the potential energy deprivation. With pathology image quantification, we report that UTMoS2 caused more severe epithelial damage and intestinal steatosis than NTMoS2, which is attributed to the edge effect and higher Mo release upon UV irradiation. Our results reveal differential AOPs involving soil sentinel organisms exposed to different Mo forms, demonstrating the potential of liposome analysis to identify novel AOPs and furthermore accurate soil risk assessment strategies for emerging contaminants.


Assuntos
Rotas de Resultados Adversos , Oligoquetos , Poluentes do Solo , Animais , Poluentes do Solo/toxicidade , Oligoquetos/metabolismo , Lipidômica , Molibdênio/toxicidade , Ecossistema , Solo
18.
Environ Toxicol Chem ; 42(8): 1782-1790, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37283205

RESUMO

The registration of pesticides in the European Union requires the assessment of the toxicity of active substances to soil invertebrates. The most commonly tested soil microarthropod species is Folsomia candida (Collembola), for which toxicity tests usually start with juveniles and determine survival and reproduction after 28 days of exposure, following Organisation for Economic Co-Operation and Development test guideline 232. Test duration may be shortened to 21 days by starting exposures with adult animals. The toxicity of chemicals can, however, vary significantly between different life stages (e.g., juveniles or adults) of the same species. In the present study, we assessed the toxicity of four active substances (cyproconazole, teflubenzuron, imidacloprid, and thiacloprid) to F. candida aged approximately 10 days (juveniles) and 20 days (adults) at the beginning of the tests. Tests were performed in LUFA 2.2 standard soil at 20 ±  2 °C, and effect concentration (ECx) values compared using likelihood ratio tests. The tests lasted 21 days for older springtails and 28 days for the younger ones. Life stage did affect the sensitivity of the springtails, with the survival and reproduction of younger animals being a factor of 2-6.5 more sensitive to the insecticides but not to the fungicide. For teflubenzuron and imidacloprid, the EC50 for younger springtails were 0.025 and 0.111 mg a.s. kg-1 soildw , respectively, and for adults 0.048 and 0.264 mg a.s. kg-1 soildw , respectively. For the younger animals the median lethal concentration values for teflubenzuron, imidacloprid, and thiacloprid were 0.353, 0.224, and 1.02 mg a.s. kg-1 soildw , respectively, and 0.571, 0.446, and 6.91 mg a.s. kg-1 soildw , respectively, for older animals. We discuss the implication of these differences for the risk assessment of pesticides to soil arthropods. Environ Toxicol Chem 2023;42:1782-1790. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Artrópodes , Praguicidas , Poluentes do Solo , Animais , Praguicidas/toxicidade , Reprodução , Poluentes do Solo/toxicidade , Solo/química
19.
Integr Environ Assess Manag ; 19(6): 1457-1472, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37039034

RESUMO

A better understanding of how soil organic matter (OM) content influences pesticide toxicity to soil invertebrates is needed to improve the ecological relevance of risk assessment approaches. In the current study, soil invertebrate toxicity data (LC50 and EC50 values) were collected from studies determining the toxicity of organic chemicals in soils with varying OM content. Relevant studies were identified by performing a literature search and through the use of toxicity databases. The data were used to address the following questions: (1) Can the relationship between toxicity and soil OM content be quantified? (2) Does soil OM content influence different toxicity endpoints in a similar way? (3) Is the influence of soil OM content on sensitivity to pesticides different between species? The results indicate that toxicity-OM relationships are chemical dependent, differ between endpoints, and are species-specific. Hence, the grouping of chemicals based solely on their lipophilicity, as well as having only one correction factor for multiple species, may not be an appropriate approach to risk assessment. Integr Environ Assess Manag 2023;19:1457-1472. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Praguicidas , Poluentes do Solo , Animais , Praguicidas/toxicidade , Solo/química , Poluentes do Solo/análise , Invertebrados , Ecotoxicologia , Medição de Risco
20.
Chemosphere ; 328: 138576, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37019396

RESUMO

Concurrent effect of nanomaterials (NMs) and warming on plant performance remains largely unexplored. In this study, the effects of nanopesticide CuO and nanofertilizer CeO2 on wheat (Triticum aestivum) under optimal (22 °C) and suboptimal (30 °C) temperatures were evaluated. CuO-NPs exerted a stronger negative effect on plant root systems than CeO2-NPs at tested exposure levels. The toxicity of both NMs could be attributed to altered nutrient uptake, induced membrane damage, and raised disturbance of antioxidative related biological pathways. Warming significantly inhibited root growth, which was mainly linked to the disturbance of energy metabolism relevant biological pathways. The toxicity of NMs was enhanced upon warming, with a stronger inhibition of root growth and Fe and Mn uptake. Increasing temperature increased the accumulation of Ce upon CeO2-NP exposure, while the accumulation of Cu was not affected. The relative contribution of NMs and warming to their combined effects was evaluated by comparing disturbed biological pathways under single and multiple stressors. CuO-NPs was the dominant factor inducing toxic effects, while both CeO2-NPs and warming contributed to the mixed effect. Our study revealed the importance of carefully considering global warming as a factor in risk assessment of agricultural applications of NMs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Triticum/metabolismo , Aquecimento Global , Cobre/metabolismo , Nanopartículas Metálicas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...